

## Mathematics Specialist Test 5 2018

## Section 1 Calculator Free Implicit Differentiation, Differential Equations

## **STUDENT'S NAME**

**DATE:** Friday 10 August

**TIME:** 20 minutes

**MARKS**: 18

### **INSTRUCTIONS:**

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (4 marks)

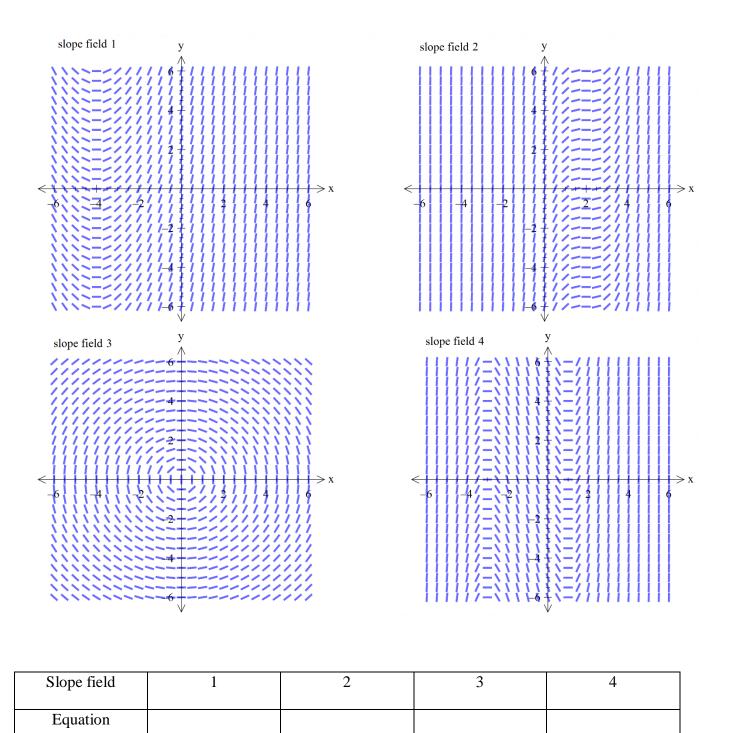
Solve the differential equation

 $\frac{dy}{dx} = \frac{-0.5x^2}{y}$  given x = 0 when y = 2.

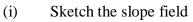
## 2. (8 marks)

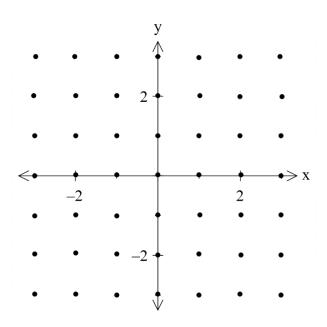
(a) From the seven differential equations given below, match four of them with the slope fields drawn. Enter results in the table below. [4]

A: 
$$y' = x + 4$$
 B:  $y' = -\frac{x}{y}$  C:  $y' = \sqrt{x}$  D:  $y' = (x+1)(x-3)$   
E:  $y' = (x+3)(x-1)$  F:  $y' = (x-2)^2$  G:  $y' = \frac{x}{y}$ 



(b) For the differential equation  $\frac{dy}{dx} = -2$ 





(ii) Use your slope field to sketch a particular solution through the point (1,-3) [2]

## 3. (6 marks)

Solve the differential equation  $\frac{dp}{dq} = 2pq(p+3)$  to give a general solution.



# Mathematics Specialist Test 5 2018

## Section 2 Calculator Assumed Implicit Differentiation, Differential Equations

## **STUDENT'S NAME**

**DATE**: Friday 10 August

**TIME:** 30 minutes

**MARKS**: 30

#### **INSTRUCTIONS:**

Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Intentional blank page

## 4. (6 marks)

Elephant population on a reserve had been reduced by poaching to only 200 before a very strict anti-poaching policy allowed the elephants to recover. The population, P, increased according to the logistics model  $\frac{dP}{dt} = 0.096P - 0.000016P^2$  where t is in years.

(a) Determine the maximum elephant population the reserve can sustain. [1]

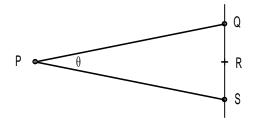
(b) Write an equation for the elephant population. [2]

(c) What is the rate of increase of the elephant population when the population reaches 1000? [1]

(d) How long will it take to reach 3000 elephants? [2]

## 5. (6 marks)

The diagram shows a hockey player at P running directly towards R, the midpoint of QS, where Q and S are the goalposts spaced 3.66 m apart at one end of a hockey pitch. PR is perpendicular to QS and  $\theta$ , the shooting angle, is the size of angle QPS.



If the player is running at a constant speed of 6 m/s towards R, at what rate is the shooting angle  $\theta$  increasing at the instant when the player is 9 m from R?

### 6. (9 marks)

Two variable resistors with resistance *M* Ohms and *N* Ohms respectively are connected in parallel so that the Total Resistance *R* Ohms is given by  $\frac{1}{R} = \frac{1}{M} + \frac{1}{N}$ .

- (a) Use implicit differentiation to write a differential equation linking  $\frac{dR}{dt}$ ,  $\frac{dM}{dt}$  and  $\frac{dN}{dt}$  [2]
- (b) At the instant when M = 50 Ohms and N = 200 Ohms, M is increasing at a rate of 10 Ohms per minute.
  - (i) Determine R at this instant.
  - (ii) Use Calculus methods to determine the rate of change of N (in Ohms per minute), at this instant, if R is increasing at a rate of 5 Ohms per minute. Show clearly how you obtained your answer. [2]

(c) Given that  $M = N^2$ , use the increments formula to calculate the approximate change in *R* when *N* changes from 50 Ohms to 51 Ohms. [4]

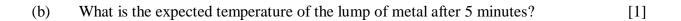
[1]

## 7. (9 marks)

A chemist places a lump of metal, initially at a temperature of 24°C into a hot research oven. The rate of change of temperature of the metal can be modelled by  $\frac{dT}{dt} = k(450 - T)$ 

where T is the temperature in °C, t minutes after being placed in the oven and k is a positive constant. After 20 seconds, the temperature of the metal bar has risen by 39°.

(a) Show all steps to turn the given differential equation into the formula for T in terms of t and state the value of k. [5]



(c) When the temperature of the lump of metal is within 5° of its maximum, the power supply to the oven is cut off and no further heating occurs. After how many minutes does this occur?